Structural shift elucidated with large-scale atomic simulations

6 julio 2015

Iron-nickel alloys are ubiquitous: they are found at the earth’s core and in meteorites. What is fascinating about such alloys is that their inner structure can change with rapid temperature swings. Heated up above 730 °C (1,340 °F), these alloys enter what is referred to as an austenitic phase. Alternatively, they can be turned into very hard alloys, referred to as a martensitic phase, by subjecting them to extremely rapid cooling. Now a team of scientists from Germany has, for the first time, created a large-scale simulation involving 275,000 atoms representing iron-nickel alloys in proportions found in nature. They show that transitions from one alloy structure to the other occurs in both an orderly and a disorderly way, depending on whether it is heated up or cooled down, respectively.
http://feeds.sciencedaily.com/~r/sciencedaily/~3/dH7PxiL0rTc/150706090046.htm

Volver