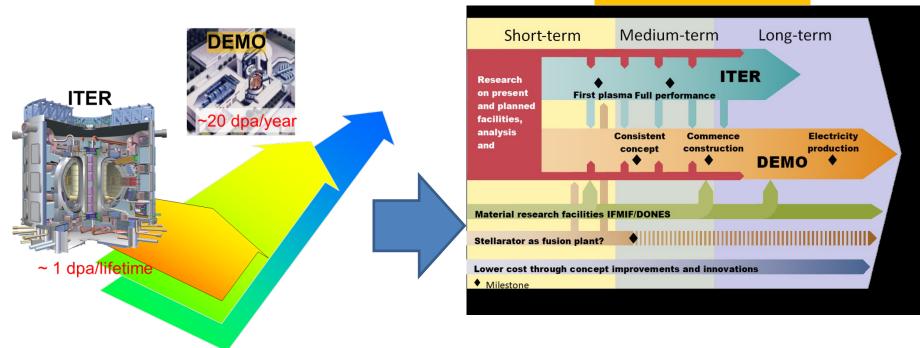


UNIÓN EUROPEA

IFMIF-DONES

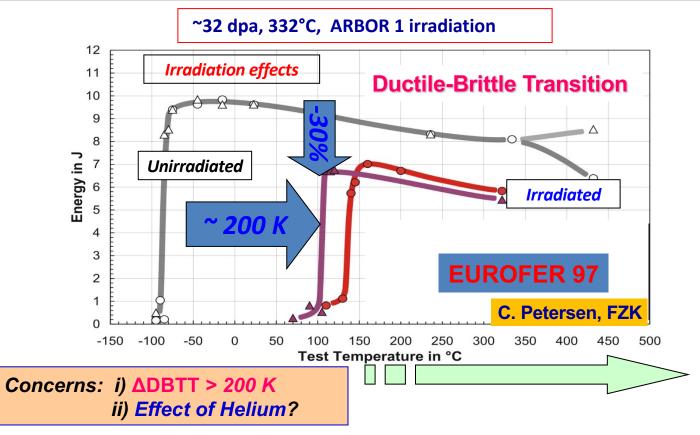
Jornada FUSIONa2 Salamanca, 23 Septiembre 2021


IFMIF

Phase

Why DONES?

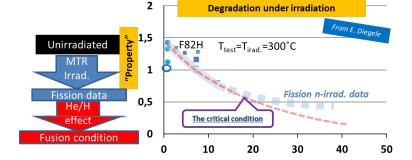
One of the main differences between ITER and DEMO is the radiation dose: at DEMO more that two orders of magnitude higher



A. Ibarra| IFMIF-DONES| FUSIONa2| September 23th 2021| Page 2

EU Fusion Roadmap

Impact properties degradation


A. Ibarra IFMIF-DONES FUSIONa2 September 23th 2021 Page 4

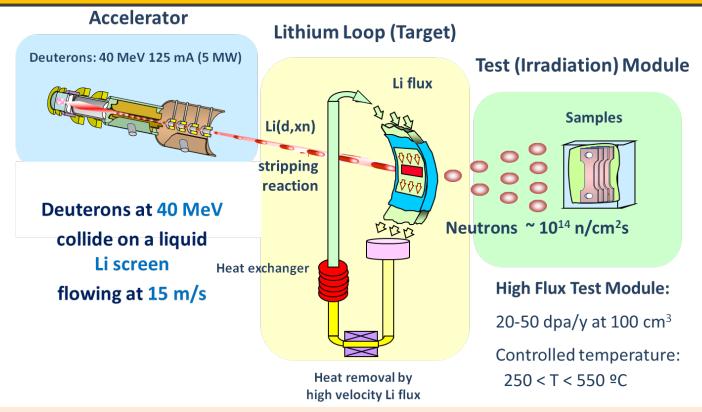
EU Strategy for Material n-Irradiation

- Intensive and broad use of MTR (Material Test Reactors) fission irradiation: EU plans for 50M€ in the next decade
- Complementary irradiation modelling and verification (multi-ion beams)

To establish 1st step "best estimate" to perform engineering design

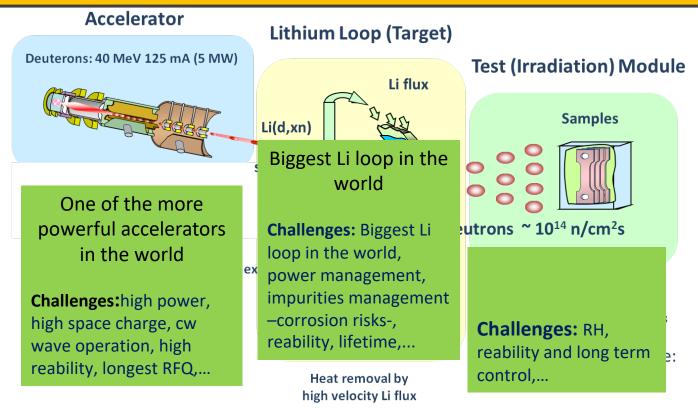
Fusion-like irradiations

Mandatory: a dedicated facility for material gualification that best mimics 14Mev neutrons with reasonable irradiation volume, fluence, and optimized homogeneity in T with the objective to (finally) validate in-vessel materials


> Based on the assumption that fusion-related effects will appear only at high dose (>10-20 dpa)

What is the IFMIF-DONES project?

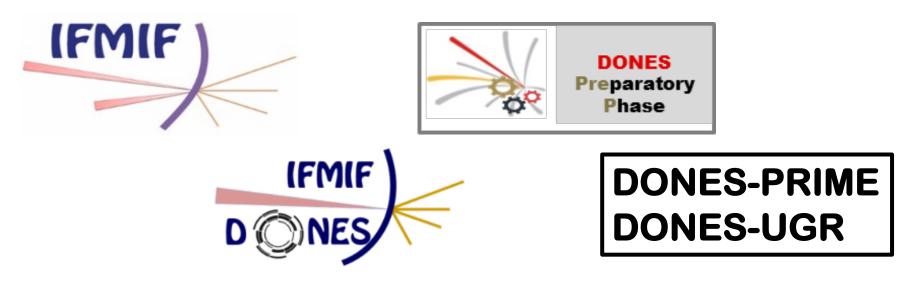
The fusion-like neutron source required for the qualification of the materials to be used in the EU DEMO



A neutron flux of $\sim 10^{18} \text{ m}^{-2}\text{s}^{-1}$ is generated with a 14 MeV neutron spectrum (up to 50 MeV energy)

What is the IFMIF-DONES project?

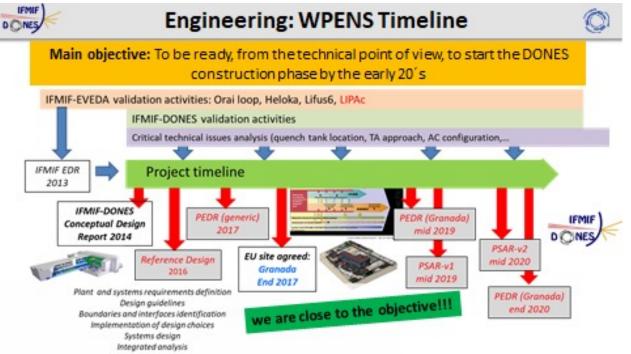
The fusion-like neutron source required for the qualification of the materials to be used in the EU DEMO


A neutron flux of $\sim 10^{18} \text{ m}^{-2}\text{s}^{-1}$ is generated with a 14 MeV neutron spectrum (up to 50 MeV energy)

DONES overall framework

The need for a facility of this type was identified long time ago and work has been carried out by using different frameworks

In the last 15 years, key projects are: IFMIF/EVEDA (included in the BA), WPENS –including specific Industry contract- (EUROfusion WP), DONES-PreP (EURATOM CSA), DONES-PRIME and DONES-UGR (Spanish funded projects),



Engineering design

- Developed for IFMIF (and a generic site) up to 2013 in the framework IEA and BA (IFMIF/EVEDA)
- Developed for IFMIF-DONES from 2015 in the framework of the ENS WP of EUROfusion

BA (IFMIF/EVEDA)

Engineering design

Developed for

_

- Advanced enough to start construction phase
- Developed for IFIMIT-DOINES ITOIT 2015 IT the trainework of the EINS WP of EUROfusion

BA (IFMIF/EVEDA)

Engineering design

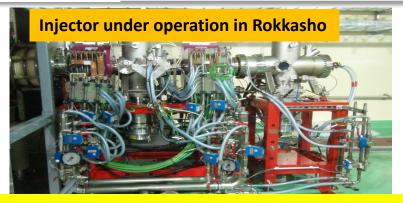
- Developed for Advanced enough to start
 - Advanced enough to start construction phase
- Developed for a rom DOINES none 2013 in the namework of the LINS wp of EUROfusion

Prototyping and validation

- Being developed for IFMIF (and a generic site) in the framework of BA (IFMIF/EVEDA)
- Developed for IFMIF-DONES from 2015 in the framework of the ENS WP of EUROfusion
- Other additional national projects

IFMIF-EVEDA Validation Activities

GQST



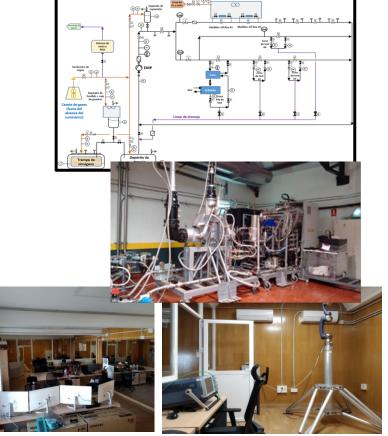
+ many other additional validation activities in many different aspects

Construction status of LIPAc

IFMIF

Recent important milestone: <u>125 mA of D+ in pulsed</u> <u>mode transmitted by the RFQ with very high efficiency</u>

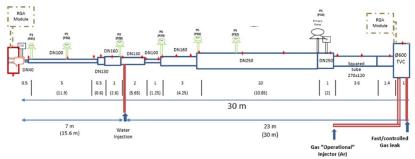
RFQ presently under commissioning at Rokkasho

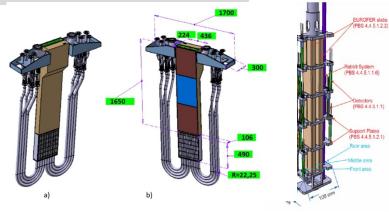

Part of the RF sytem under operation at Rokkasho

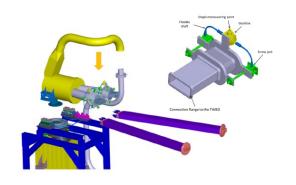
DONES-PRIME DONES-UGR

□ Virtual Reality lab for Remote Handling simulation

- Control Systems Lab with the target to develop a digital mockup of the facility
- High-power RF Lab to test SSPA technology and components
- Li purification prototipe loop (LITEC) to test impurities control technology
- LIFIRE facility to study Lithium fire risks




DONES-PRIME DONES-UGR


Specific prototypes under construction

- Start-Up Monitoring Module (STUMM). Irradiation module to used during the commissioning phase in order to fully characterize radiation map
- Quick Disconnecting System (QDS). To validate RH conection system
- Multipurpose VaCuum accidental scenarios (MuVaCas). To analyze different posible accidental scenarios
- Electromagnetic Pump prototype. To characterize pump performance

BA (IFMIF/EVEDA)

Engineering design

- Developed fc Advanced enough to start construction phase
- Developed for it with DOINES from 2013 in the trainework of the LINS with or EdROfusion

Prototyping and validation

- Beil Main conclusion up to now: Design seems feasible (more results to come but no
- Dev showstoppers identified)
- Other additional national projects

BA (IFMIF/EVEDA)

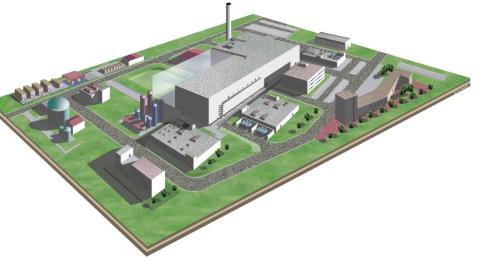
Engineering design

- Developed fc Advanced enough to start construction phase
- Developed for minin Domes none 2013 in the namework of the Live wp or EdROfusion

Prototyping and validation

- Beil Main conclusion up to now: Design seems feasible (more results to come but no
- Dev showstoppers identified)
- Other additional national projects
- The site

The Site



It has been agreed that if it is built in EU, it will be located in the Granada province (Andalusia region – southern Spain), 18 km southwest from Granada city in the Granada Metropolitan park (Escúzar).

BA (IFMIF/EVEDA)

Engineering design

- Developed fc Advanced enough to start construction phase
- Developed for it with DOINES HOLL 2013 IT the trainework of the LINS MP of EdROfusion

Prototyping and validation

- Beil Main conclusion up to now: Design seems feasible (more results to come but no
- Dev showstoppers identified)
- Other additional national projects
- The site

Available and fully characterized

Engineering design

- Developed for IEMIE (and a conoria site) up to 2013 in the framework IEA and BA (IFMIF/EVEDA)
 - Developed fc Advanced enough to start construction phase

JROfusion

Prototyping and validation

- Being developed for IEMIE (and a generic site) in the framework of BA (IEMIE/EVEDA)
 - Dev Main conclusion up to now: Design seems feasible (more results to come but no
 - showstoppers identified)

• The site

Oth

Available and fully characterized

Implementation

- In order to prepare for the project implementation, a complete planning of the project has been prepared (Project Plan, Time Schedule, Cost Estimate, Risk Analysis, Quality, Project Lifecycle,...)
- At this moment, high level discussions are going on in order to define the international implementation of the project (up to 15 countries and international organizations involved)

IFMIF-DONES in EU: Schedule milestones

First materials PIE data around 2035-37 Likely three campaigns until end of DEMO EDA

Engineering design

- Developed for IEMIE (and a conoria site) up to 2013 in the framework IEA and BA (IFMIF/EVEDA)
- Developed fo Advanced enough to start construction phase

JROfusion

Prototyping and validation

- Being developed for IEMIE (and a generic site) in the framework of BA (IEMIE/EVEDA)
 - Dev Main conclusion up to now: Design seems feasible (more results to come but no
 - showstoppers identified)

• The site

Oth

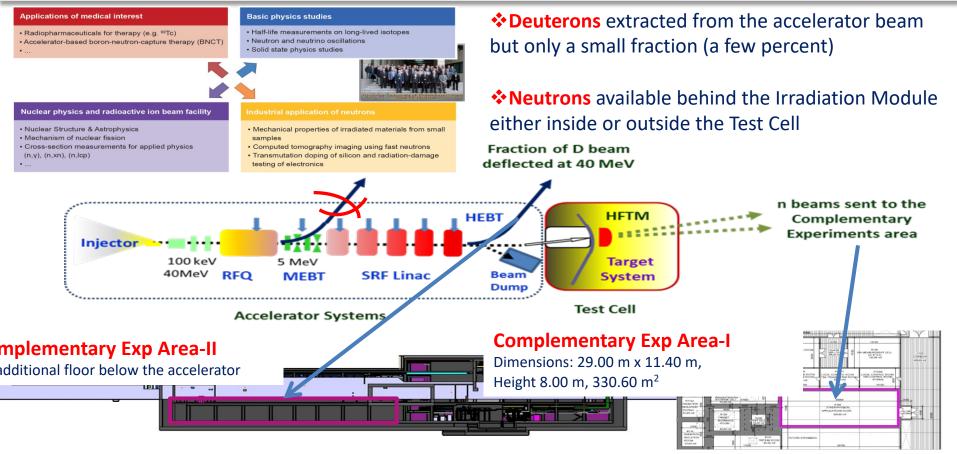
Available and fully characterized

Implementation

- In order to prepare for the project implementation, a complete planning of the project has been prepared (
 Some decisions are expected in the short term
- At this moment, migniever discussions are going on in order to define the international implementation of the project (up to 15 countries and international organizations involved)

IFMIF-DONES Spain Consortium

In July 2021 it has been signed the agreement between Spanish Goverment and regional Goverment (Junta de Andalucia) to create a new institution that will be in charge of the project development

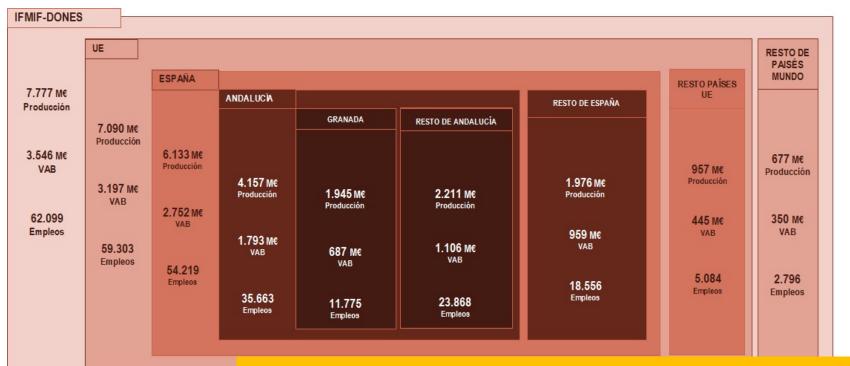

Expected role of the Spanish Consortium

- In charge of the Spanish contribution (50% of the construction costs)
- A significant fraction of the international Program Team
- Legal representative of the facility
- In charge of the operation of the facility

Complementary Experiments

Summary

- IFMIF-DONES is the EU proposed fusion-like neutron source to be implemented in the near future at Granada
- IFMIF-DONES is based on a high current D accelerator hitting on a liquid Li moving at high velocity. It will allow irradiation of around 1000 engineering-relevant samples at a dose rate higher than 10 dpa/fpy. The engineering design of the facility has been developed during the last 5 years
- Facility design is flexible enough to accommodate different irradiation needs that will evolve along the time
- Facility design is flexible enough to accommodate simultaneously other type of experiments of interest in other scientific areas
- The Project is progressing properly gaining momentum, international consensus and technical readiness. Significant decisions are expected in the short term



Impacto socioeconómico

Impacto muy relevante, pero además es importante resaltar el tipo de impacto: esencialmente tecnológico (que normalmente tiene un gran poder multiplicador en otras áreas de la sociedad)

Complementary Experiments at IFMIF-DONES

There is interest in science communities outside of the fusion research program to take advantage of the unique features of IFMIF-DONES

Applications of medical interest

- Radiopharmaceuticals for therapy (e.g. ⁹⁹Tc)
- Accelerator-based boron-neutron-capture therapy (BNCT)

Basic physics studies

- Half-life measurements on long-lived isotopes
- Neutron and neutrino oscillations
- Solid state physics studies

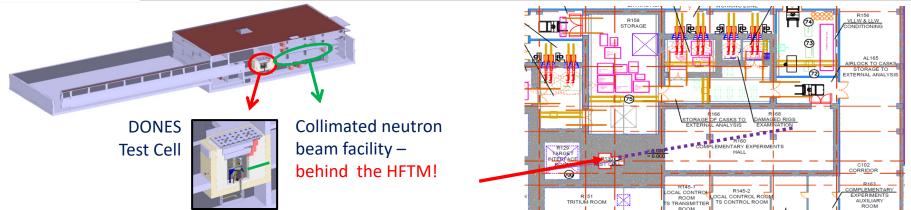
Complementary experimental program must be implemented in parasitic mode, thus not affecting the main mission of IFMIF-DONES

Nuclear physics and radioactive ion beam facility

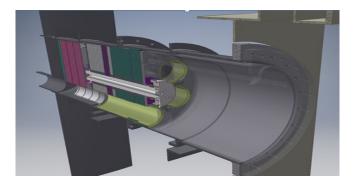
- Nuclear Structure & Astrophysics
- Mechanism of nuclear fission
- Cross-section measurements for applied physics (n,γ), (n,xn), (n,lcp)
- ...

•

Industrial application of neutrons

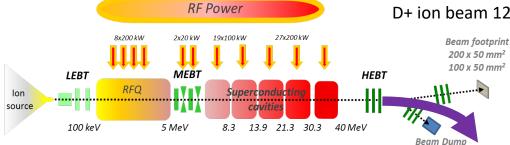

- Mechanical properties of irradiated materials from small samples
- Computed tomography imaging using fast neutrons
- Transmutation doping of silicon and radiation-damage testing of electronics

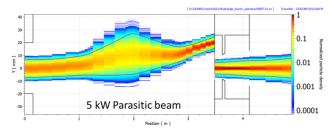
... this list is not final


Complementary experiments with neutrons

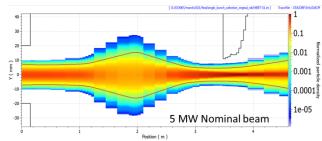
- ✓ A neutron transport line is placed from the Test Cell to a collimated neutron beam facility
- ✓ A neutron shutter is being designed to operate the complementary experiments facility independently of the Test Cell irradiation
- Possible moderation of the neutron flux is considered

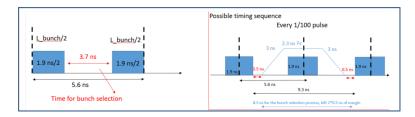
THIS IS IMPLEMENTED in IFMIF-DONES design!




Complementary experiments with deuterons

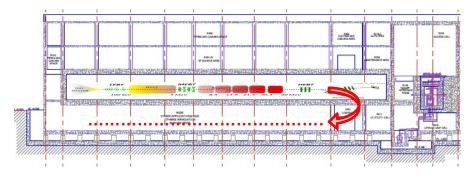
175 MHz Solid State RF source

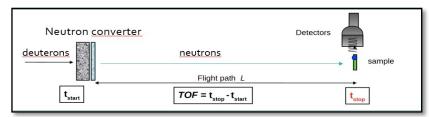



D+ ion beam 125 mA / 40 MeV (5 MW)

Possible extraction of a fraction (1-0.1%) of the beam at 40 MeV:

- ✓ Extraction in the high-energy beam transport line
- A configuration of a meander line of 3.5 m + electrostatic septum + septum magnet is proposed
- Timing conditions: a beam bunch length of 1.9 ns, separation between bunches of 3.7 ns
- ✓ Other option a slow extraction, more flexible




- ✓ A pulsed beam of 40 MeV deuterons could be used directly for (nuclear) physics experiments
- ✓ It could also be used on another production target (e.g. Li, Be, graphite) to produce neutrons,
 → in that way a pulsed source of neutrons would be obtained

(similar to NFS facility at GANIL, n_TOF at CERN)

DONES building, section view Accelerator at level 1, FCE at ground level

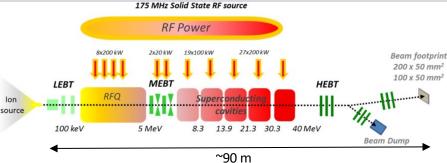
NO DECISION ON IMPLEMENTATION YET!

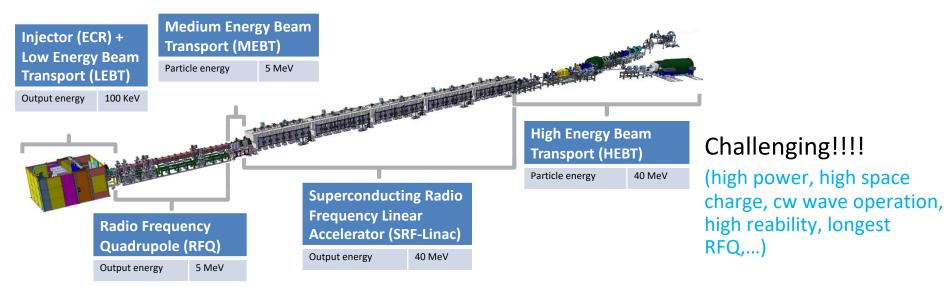
Neutron time-of-flight facility (n_TOF)

This option under study:

- Possible characteristics of parasitic D beam
- Integration with the optics of the nominal beam
- Feasibility of n_TOF facility (or experiments with D)
- Catalogue of possible experiments

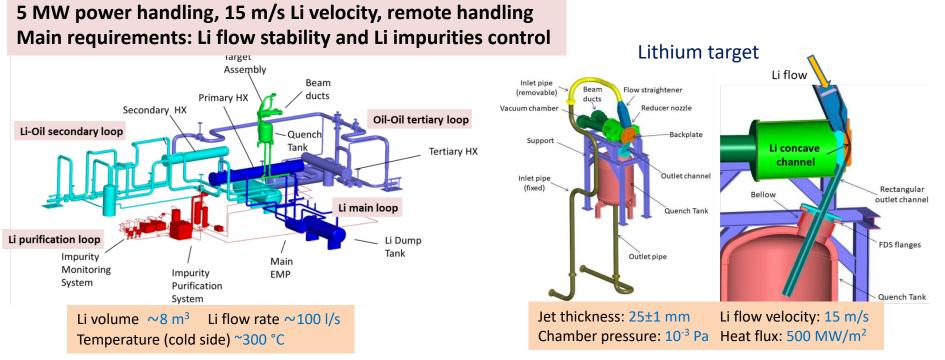
Possible experiments with pulsed deuteron or secondary neutron beams




	Neutron	Beam	Target	Detection	Uniqueness	Foreseen
Proposal	converter	requirements	characteristics	system	@ DONES	outcome
Gamma spectroscopy	Yes	pulsed deuterons;	radioactive fissile	HPGe detectors;	pulsed intense beam;	gamma-ray spectroscopic
of the nuclei produced		repetition time:	actinide targets;	GFM spectrometer;	long duration of measurement;	studies of hitherto inaccessible
in fast-neutron-induced		few hundreds ns;	milligram samples;	TOF measurement	combining with GFM	exotic nuclei near the
fission reaction		pulse width: 1-2 ns	Zr or Be backing		spectrometer;	doubly-magic ⁷⁸ Ni
Production of radionuclides	No	continuous or	powder targets;	HPGe detectors;	high beam intensity;	production of Cu-64, Re-186g, and
with high intense		pulsed deuterons;	backing	pneumatic transfer	long irradiation time	in vivo Sc-44m/Sc-44g generator
deuteron beam				system		
Investigation of pygmy dipole	Yes/No	pulsed deuterons;	stable targets;	PARIS detectors;	pulsed intense beam;	studies of the fine structures
resonance (PDR) in stable		repetition time:	about 3 cm thick	neutron detectors;	two probes (n and d);	of pygmy dipole resonances
nuclei via (n, n') and (d, d')		few hundreds ns;		TOF measurement	complementary to the	in various nuclei e.g. ⁹⁰ Zr, ¹²⁴ Sn,
reactions		pulse width: 1-2 ns			studies in other labs	²⁰⁸ Pb with neutron and
						deuteron probes
Half-life measurements	Yes	continuous	stable targets;	HPGe detectors;	high beam intensity;	precise half-lives measurement
of long-lived isotopes			> 1 gram samples	pneumatic transfer	long irradiation time	of long-lived ⁷⁹ Se, ⁹³ Zr, ¹⁰⁷ Pd,
				system		¹²⁹ I, ¹²⁹ Xe, ¹³⁵ Cs, isotopes
Deuteron-induced	No	pulsed deuterons;	stable	neutron detectors;	pulsed intense beam	spectroscopic factor and excitation
reactions		repetition time:		HPGe detectors;		energy determination for the
		few hundreds ns;		TOF measurement;		low-spin states in nuclei
		pulse width: 1-2 ns		GFM spectrometer		in close proximity
						of the path of stability
Neutron Time Of Flight	Yes	pulsed deuterons;	stable and fissile	neutron detectors;	pulsed intense beam;	cross sections studies
(n-TOF) facility		repetition time:	targets	HPGe detectors;	long duration of measurement;	of various neutron-induced
		few hundreds ns;		fission chamber	long base for n-TOF	reactions
		pulse width: 1-2 ns				

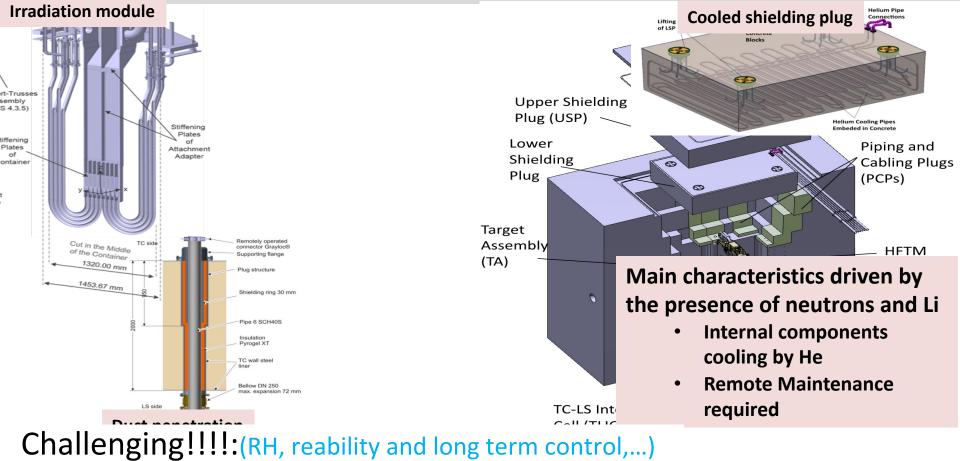
Accelerator systems summary

175 MHz, 5MW, 125 mA, CW, high availability: One of the more powerful accelerators in the world



A. Ibarra et al IFMIF-DONES progress ICFRM-20 October 24th-29th 2021 Page 32

Li systems summary


Challenging!!!!

(Biggest Li loop in the world, power management, impurities management –corrosion risks-, reability, lifetime,...)

A. Ibarra et al| IFMIF-DONES progress| ICFRM-20| October 24th-29th 2021| Page 33

Test Systems summary

A. Ibarra et all IFMIF-DONES progress ICFRM-20 October 24th-29th 2021 Page 34