

Laser accelerated energetic protons from a non-uniform density plasmasphere

Ankita Bhagawati, Nilakshi Das

Dept. of Physics, Tezpur University, Napaam, Tezpur-784028, Assam (India). E-mail: ankitabhagawati08@gmail.com

The intense main laser pulse is usually preceded by a pre-pulse of lower intensity in all the available high-power laser facilities. This pre-pulse ionizes the target and renders its density inhomogeneous for the upcoming main-pulse [1]. Here, we demonstrate the tunability of the inherent primary ion acceleration mechanisms to attain a handle on the ion beam qualities. We use three-dimensional particle-in-cell simulations to analyze the interaction of an intense circularly polarized laser main-pulse on a pre-deformed hydrogen-plasma microsphere. A density non-uniformity is considered with a central peak plasma density which drops isotropically towards the plasma boundary. The steepness of the density profile is found to play a crucial role in the acceleration processes involved, as well as on the maximum energy attained by the protons. It is seen that a smaller density gradient leads to a near-isotropic expansion of the target, whereas, a steeper gradient in the density favours the formation of shocks in the decreasing density profile which eventually reflects protons to high velocities.

References

1. A. Andreev, et al, Plasma Phys. Cont. Fusion, 48 (11), 1605, 2006.

