

Fast-Sweeping Langmuir probes: What happens to the I-V trace when sweeping frequency is higher than the ion plasma frequency?

Chenyao Jin ^{1,2}, Chi-Shung Yip ¹, Wei Zhang ¹, Di Jiang ¹, and Guo Sheng Xu ¹
1) Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China E-mail : csyip@ipp.ac.cn
2) University of Science and Technology of China, Hefei Anhui 230026, China

A rising demand of fast sweeping Langmuir probe has been spurred due to its implement simplicity with increasing interest in studying turbulent fluctuations and transient phenomenon^[1,2]. However, when a Langmuir probe sweeps much faster than the ion sheath transit time, typically the ion plasma frequency ω_{pi} , an equilibrium sheath cannot truly form resulting in a time-averaged current of a non-equilibrium sheath^[3]. Such influence of improper ion current on I-V traces is undetermined. Therefore, I-V characteristics of fast-sweeping planar Langmuir probe with $f_{sweep} \gg \omega_{pi}$ has been investigated in a multi-dipole filament discharge. A fast-sweeping dual Langmuir probe system has been constructed with a 30 mm in diameter tantalum probe tip and a maximum available sweeping frequency of 500 KHz is achieved. The experiments were conducted at a low-density plasma with ion plasma frequency $\omega_{pi} \sim 50$ KHz, allowing sweeping frequency $f_{sweep} >> \omega_{pi}$. Preliminary results indicate incorrect ion current is insignificant to the determination of Te and an overestimated electron density ne is observed as expected when a planar Langmuir probe sweeping at frequency higher than ω_{pi} . The relative errors of probe data between fast sweeping Langmuir probe and typical one is less than 30%, which is acceptable for Langmuir probe. And the methods compensating capacitive effect are briefly discussed.

References

- [1] Skoutnev, V., et al., *Fast sweeping probe system for characterization of spokes in* $E \times B$ *discharges.* Review of Scientific Instruments, 2018. **89**(12): p. 123501.
- [2] Chiodini, G., C. Riccardi, and M. Fontanesi, A 400 kHz, fast-sweep Langmuir probe for measuring plasma fluctuations. Review of Scientific Instruments, 1999. **70**(6): p. 2681-2688.
- [3] Lobbia, R.B. and A.D. Gallimore, *Temporal limits of a rapidly swept Langmuir probe*. Physics of Plasmas, 2010. **17**(7): p. 073502.

