

$\label{eq:chemical kinetics and density measurements of OH in an atmospheric \\ pressure He + O_2 + H_2O \ radiofrequency \ plasma$

Alexandra Brisset ^{(*)1}, Andrew R. Gibson^{2,3}, Sandra Schröter¹, Kari Niemi¹, Jean-Paul Booth⁴, Timo Gans^{1,5}, Deborah O'Connell^{1,5}, Erik Wagenaars¹

1) York Plasma Institute, Department of Physics, University of York, UK

E-mail : alexandra.brisset@york.ac.uk

2) Research Group for Biomedical Plasma Technology, Ruhr-Universität Bochum, Germany

3) Institute of Electrical Engineering & Plasma Technology, Ruhr-Universität Bochum, Germany

4) LPP, CNRS, Ecole Polytechnique, Palaiseau, France

5) School of Physical Sciences, NCPST, Dublin City University, Dublin 9, Ireland

Densities of OH in a RF driven atmospheric-pressure plasma were measured and modelled in a plane-parallel geometry, in helium with small admixtures of oxygen and water vapour (He+O₂+H₂O) [1]. The OH density is measured under a wide range of conditions by absorption spectroscopy, using an ultra-stable laser-driven broad-band light source [2]. This light source has a high intensity and excellent temporal intensity stability, leading to an absorption baseline variability lower than 2×10^{-5} over the range of the OH(X) \rightarrow OH(A) transition (306-311 nm) [2]. This setup allows a detection limit one order of magnitude lower than the typical limit (about 10⁻³) that can be achieved with the more commonly used UV-LEDs [3]. These measurements are compared with 0D plasma chemical kinetics simulations adapted for high levels of O₂ (1%). It was found that the addition of O₂ has a weak effect on the OH density because, while atomic oxygen becomes a dominant precursor for the formation of OH, it makes a nearly equal contribution to the loss processes of OH. The small increase in the density of OH with the addition of O₂ is instead due to reaction pathways involving increased production of HO₂ and O₃. The simulations show that the densities of OH, O and O₃ can be tailored relatively independently over a wide range of conditions. The densities of O and O₃ are strongly affected by the presence of small quantities (0.05%) of water vapour, but further water addition has little effect. Therefore, a greater range and control of the reactive species mix can be obtained by the use of well-controlled multiple gas admixtures, instead of relying on ambient air mixing.

References

- [1] Brisset et al. 2021 J. Phys. D: Appl. Phys. https://doi.org/10.1088/1361-6463/abefec
- [2] Foucher M, Marinov D, Carbone E, Chabert P and Booth J-P 2015 *Plasma Sources Sci. Technol.* **24** 042001
- [3] Wijaikhum A, et al. 2017 Plasma Sources Sci. Technol. 26 115004

